How do you study something invisible? This is a challenge facing astronomers who study Dark matter.
Although black matter contains 85% of all matter in the universe, it does not correspond to light. This can only be seen by the gravitational effect on the published and other cases. To make matters worse, attempts to locate dark matter directly on Earth have so far failed.
Despite the bad qualities of dark matter, we have learned many things about it.
We know it’s not just dark, it’s cold. As a result, they climb together and form the seeds of the galaxy cluster. It is often formed around galaxies, forming the vast majority of galaxies.
However, there are still many unresolved questions about dark matter, so astronomers often develop new models for dark matter, comparing them to their observations to test their accuracy.
One way to do this is through the best computer simulators.
Recently, a team from the Harvard and Smithsonian Center for Astrophysics conducted a detailed simulation of the dark matter universe, and it produced some surprising results.
The accuracy of any dark matter simulation depends on the assumptions you make about dark matter. In this case, the team assumes that darkness is the case Interacting poorly With 100 times larger than a proton.
WIMP is one of the most popular theories for dark matter. Computer simulations of WIMP Dark Matter have already been performed. However, it was too much in resolution, mimicking the scale and features in the thirty commands of intensity.
In this simulation, dark matter forms around the galaxies, as we see. But interestingly, it was found that haloes evolved from all the planetary scales, from small, mass-mass haloes, to galactic haloes, to massive haloes that form around clusters of galaxies.
These halls have a similar structure, where they are very dense towards their center and spread further along their edges. The fact that it occurs on all scales makes it an obvious feature of dark matter.
Although small scales are very small but cannot be detected by their severity of effect on light, they can tell us how dark matter affects itself. One idea about dark matter is that when dark matter particles collide with each other, they emit gamma radiation.
Some gamma-ray observations The center of our galaxy receives more gamma rays, which may be due to dark matter. In this particular model, most of the gamma radiation produced by the dark matter comes from small haloes.
Because the scale of a halo will affect the spectral spectrum of gamma rays, this sample makes special predictions about the amount of gamma-rays we should see in galaxies and other galaxies.
Dark matter is one of the biggest unsolved problems in modern astronomy.
Although we would like to explore this directly, unless it does, such simulations are our most effective means of better understanding the issue of darkness.
This article was originally published by The universe today. Read them Original article.